
NASA Contractor Report

ICASE Report No. 93-14

191445

r
//v_ /

J-g

/C S 2O
Years of

Excellence

RELIABILITY ANALYSIS OF COMPLEX MODELS

USING SURE BOUNDS

David M. Nicol

Daniel L. Palumbo
N
I

Z

Ill

m
m

U
C

I,..4

1"4

C_

NASA Contract Nos. NAS 1-18605 and NAS 1- 19480

March 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

@
National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

_w
Zc_

_OO

uJ

_uU,,

"_ £3 O
I Z





Reliability Analysis of Complex Models using SURE Bounds

David M. Nicol 1

College of William and Mary

Williamsburg, VA 23187

and

Daniel L. Palumbo

NASA Langley Research Center

Hampton, VA 23668

ABSTRACT

As computer and communications systems become more complex it becomes increasingly more

difficult to analyze their hardware reliability, because simple models may fail to adequately capture

subtle but important model features. This paper describes a number of ways we have addressed

this problem for analyses based upon White's SURE theorem. We point out how reliability analysis

based on SURE mathematics can be extracted from a general C language description of the model

behavior, how it can attack very large problems by accepting recomputation in order to reduce

memory usage, how such analysis can be parallelized both on multiprocessors and on networks of

ordinary workstations, and observe excellent performance gains by doing so. We also discuss how

the SURE theorem supports efficient Monte Carlo based estimation of reliability, and show the

advantages of the method.

1This research was supported by the National Aeronautics and Space Administration under NASA Contract Nos.

NAS1-18605 and NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. This research was also supported

in part by NASA grants NAG-I-1060, NAG-l-I132, and NSF grant CCR-9201195.



E

_m
[]

|

|

|

mm



1 Introduction

White's SURE theorem has laid the foundation for a number of reliability tools, including SURE

[3] itself, ASSIST [2, 11], TOTAL, and PAWS. The latter three tools provide the user with a formal

framework within which a model is described, then use the model description to expLicitly build a

semi-Markov state-space. The tool SURE is then appLied, determining upper and lower bounds on

the transient probability of the system entering a state reflecting system failure (i.e., a death-state)

within a specified period of time. These tools have a large user base and have proven to be very

useful in a wide range of contexts. For example, a survey conducted by NASA Langley found

that the ASSIST/SURE toolset is used by United Technologies to model redundant engine control

architectures, by Boeing to model fighter flight control systems, by Raytheon to model space-borne

systems, by Rockwell-ColLins to evaluate trade-offs in the reLiability and safety of primary flight

control architectures, and General Electric to model engines, engine controllers, locomotive engines,

and satellite controllers. Industrial interest in SURE-based analysis is apparently strong.

One drawback of these tools is that they are unable to efficiently explore (i) very large models,

(ii) models where the state transformation cannot be expressed in terms of simple modifications

to state variables, or (iii) models where recognition of a death-state is complex. For example,

model sizes become large any time one desires a complete analysis of a detailed model; state

transformations become complex if recovery transitions involve non-trivial computations, such as

finding new routes for messages through a fault-tolerant network; death-state recognition may be

complex if system operability is defined in terms of the system's ability to provide some service,

e.g., every pair of operable processors are able to communicate using some specific routing protocol.

We later give examples of all three situations.

This paper describes methods we have used to address these situations, and a software tool called

ASSURE that embodies these methods. ASSURE combines the functions of ASSIST and SURE.

The user's interface to ASSURE is an enhanced version of the ASSIST [2] language. ASSIST's

power of expression is extended to ahnost arbitrarily complex models by allowing the user to

write C language routines to recognize system failure, to recognize system transition conditions,

and to express system state modification following a transition. Other techniques we describe are

related to using the SURE bounds to efficiently analyze some large models. One such method is to

concurrently generate and analyze a model's state-space via depth-first-search (DFS) exploration.

Memory requirements are Limited to that needed to manage the DFS stack, instead of the entire

state space (as is presently required with ASSIST/SURE); however, memory efficiency comes at

the price of state recomputation. The method has the intentional and important advantage of

supporting parallel processing on ordinary networks of workstations. We also investigate user-

assisted methods for trimming the model space. Here we permit the user to use expert knowledge

of system behavior to classify possible state transitions, thereby allowing the tool to make inferences

about the possibility of imminent system failure without actually generating the model states that



might reflectsuchfailure. Evenwith the fore-mentionedfeatures,the sheersizeof state-spaces
involvedin somemodelsprohibit anexactand exhaustiveanalysis.To addressthis problemwe
havedevelopedefficientwaysof jointly usingMonteCarlosimulationand the SUREboundsto
constructconfideflceintervalson estimatedupperandlowerreliability bounds. In addition, our
method supportsestimationof arbitrary measuresof systemperformancein death-states,and
we haveextendedthe ASSISTlanguageto supportautomatedestimationof theseuser defined
statistics. Finally, the MonteCarlo analysisis easilyparallelizedas well, againon a networkof
ordinaryworkstations.

ASSIST/SUREisonly oneof manygoodreliability tools;i.e.,seetherecentsurvey[8]. Various
of thefeatureswe'veincorporatedinto ASSUREhavebeenusedin thepastby othertools. Theno-
tion of expressingmodelsin a highlevellanguageandthenautomatingthegenerationandanalysis
of the underlyingMarkovchainis commonto all modernreliability tools. For example,HARP [5]
usesa fault treedescriptionof failureprocessesanda petri-net descriptionof recoveryprocesses.
FromtheseaMarkovchainisconstructedandanalyzedto providesystemstateprobabilities.SAVE

[7]usesalanguagedescribinga machine-shopwith repairmen.SHARPE[17]providesa numberof
differentmodeltypes,in a sort of analysistoolbox. The notionof truncatinga state-space(while
developingit, oi"searching_t)is found in the toolsabove,as wellas in [6]. The ideaof usinga

commonprogramminglanguageas a vehiclefor describinga model is exploitedin DEPEND[9],
WhichalsousesMonteCarlosimulation,asdoesSAVE[7]. A MonteCarloversionof HARPhas
alsobeendeveloped[1]. Our intent is to showhowASSURE'sfeaturestogetherallowus to attack
very largeandcomplicatedsystemmodels,andto demonstratea singletool that seamlesslyallows
eitheranexactanalysisor asimulationanalysisand,or, a serialsolutionor aparallelsolutionfrom
a common(but general)modeldescription.Our main contributionsareimplementationmethods
suitablefor solvingsuchmodels.Thesecontributionsarethree-fold.First, wedemonstratethat on
an interestingsetof largeproblemsthereis muchto begainedby regeneratingstatesin a depth-
first analysis,rather thansavingeachgeneratedstateagainstthe possibilitytl_atit will bevisited
again. This styleof analysispermitssolutionof somemodelsconsideredto be "out of reach"at
the time [8]waswritten (i.e., l0 sstates,101°ratio of repairratesto componentfailurerates). One
Shouldnote,however,that therelativeadvantageof themethoddecreasesasthenumberof failures
requiredto push the systeminto a death-stateincreases.Consequently, exact analysis using the

- method is best suited for systems that tolerate 2-5 failures in the mission time. We demonstrate

empirically that this approach is ideal for parallel processing a new and highly practical aspect of

reliability analysis. Thirdly, we show how the SURE bounds lend themselves to an efficient Monte

Carlo analysis, which itself is parallelizable.

It might be argued that detailed analysis of large models is unnecessary, since at some level a

reliability model w_ll have to mask details anyway, and an expert modeler can often craft a good

model from a detailed understanding of the system being modeled. While we will never dispute

the power of a expert modeler using a simple tool, we believe that the need to analyze large

!

i



detailed models is inevitable. We anticipate the day when a system is specified and designed using

a single tool from which reliability and performance analyses are automated. An automatically

generated model is far more likely to be large and complicated than one developed by a human

expert. Furthermore, an automated analysis accommodates a system design or parameter change

by simply redoing the analysis--that same change may invalidate a human expert's entire approach.

Towards this end, we are exploring ways in which large complex models might be automatically

analyzed.

It might also be argued the SURE approach is inadequate, owing to its assumption of time-

independent failure rates. While this argument has some validity, we are not attempting to advance

any particular side in the sometimes heated debate over reliability tools. We believe that the

techniques we describe are not limited to SURE; they can be applied to any mathematical analysis

based on paths through a state-space. Perhaps the potential shown by ASSURE for large problems

may motivate mathematical research on path-based analysis that overcomes SURE's limitations.

This paper is organized as follows. Section 2 describes two model problems that exhibit chal-

lenging characteristics. Section 3 describes extensions we've provided for the ASSIST language to

enhance model expression. Section 4 presents the SURE bounds. Section 5 describes implemen-

tation techniques that support the analysis of large complex models, and Section 6 explains how

SURE bounds can be used in the context of an efficient Monte Carlo analysis. Section 7 presents

our conclusions.

2 Two Examples

Our work has been motivated in large part by the challenges presented by two diverse yet repre-

sentative reliability models. The first model is of a fault-tolerant flight-control computer network

having a complex recovery mechanism, the second is that of a large computer network that achieves

fault-tolerance through redundancy of communication channels. This section discusses both mod-

els, and the characteristics which challenge the capabilities of existing SURE-based tools.

The first problem presents the challenge of state-space size, and complexity of expressing a

complex reconfiguration strategy within the confines of the modeling language. These challenges

are both present in a model based roughly on AIPS [12], an architecture developed by Stark Draper

Labs. The model is comprised of a Fault-Tolerant-Processor (FTP), that manages a collection of

"devices" (sensors). The devices are replicated four times for quad redundancy, and are distributed

across two networks, accessed by the FTP from six channels. Only selected links in the network

are "in use" at any time. The set of selected links in a network establish a virtual bus between

one FTP channel, and every operational node in the network. In the event a selected link or a

network node fails, the network is considered to be down. However, it may be repaired if another

set of links can be found to establish the virtual bus. During recovery the FTP knows to ignore

the downed network, and to take its sensor data from the other network. The system is considered

i



to have failed if the FTP itself fails, if both networks are simultaneously down, or if the majority

of operable devices of any type are not able to communicate with the FTP. Figure 1 illustrates an

example of this network and its hardware components. Shown are four channels linking the FTP

to the networks, six network interfaces, thirty-two links, fourteen switching nodes, eight interface

devices, and sixteen devices. "In-use" links in one particular system state are highlighted; a number

of links are shown to have failed.

" The particular set of links chosen during repair to re-implement a virtual bus will impact

the distribution of the remaining time until system failure, especially if failure rates of remaining

components are heterogeneous. Greater accuracy is obtained then by explicitly modeling the re-

configuration process than 'by assigning an approximate recovery rate to a network failure. If we

accept the desirability of an accurate recovery model, we consequently require that the reliability

tool be able to concisely express the reconfigurati0n strategy.
=

The second problem arose in a study comparing the effectiveness Of fault-tolerant routing pro-

tocols on a binary hypercube. Nodes and links may fail; when one does, no explicit recovery is

attempted. However, network messages can accommodate such failures by adaptively rerouting

around failed nodes or links. A variety of fault tolerant routingprot0cols exist, some of which may

not find a extant route. Given a protocol, the system is considered to have entered a death-state

if either more than half of the nodes have failed, or if there exist two operable nodes between

which the protocol cannot establish a message path. The complexities of these protocols defeat

more elegant graPh-based based reliability analyses, and we are left to use simulation if we are to

estimate reliability.

This model presents us with two fundamental problems. First, depending on the network size,

tens to hundreds of link and node failures can be tolerated before the system enters a death-state.

The size of the state space absolutely prohibits an exhaustive analysis. The second problem is

that recognition of a death-state is expensive. Given the state of the network, one must essentially

simulate messag e routing behavior between every pair of nodes. The cost of a single connectivity

check is O(L), implying an O(LN2_ death-state recognition cost.

The sections to follow describe the methods we've used to address the challenges posed by these

problems.

3 Language Extensions to ASSIST

The ASSIST language (see [2]) provides a simple means of describing a system and how it evolves

in the presence of failures and recoveries. The notion of state variable is central to ASSIST; one

of the first roles of an ASSIST model is to declare the state variables (and their initial values) just

as variables are declared in programming languages. Evolution of the system is described in terms

of Boolean conditionals on the state variables (describing conditions under which a transformation

may occur), and simple modification of state variables (describing the transformation itself). For



!
!

°

FrP
&

O FrP Channel (D Node

Network Interface O

Device Interface

Device

.............. Failed link Good Link Selected Link

Figure 1: Example of reconfigurable flight control computer network, highlighting virtual bus

connections.

example, a state variable N may describe the number of working processors, any of which may fail.

The ASSIST statement

IF N>O TRANTO N=N-I BY N,LAMBDA;



declares that from any system state where N exceeds zero, another processor can fail, and change

the system state by decrementing N. The mathematics of SURE assume that a component's lifetime

is exponentially distributed; the statement above declares that the transformation occurs with rate

N*LAMBDA (LAMBDA is defined as a constant elsewhere). Boolean conditionals also identify death-

states, for instance,

DEATHIF N--O;

declares that the system is in a death-state whenever all processors have failed.

This particular example is unreahstically simple. Larger ASSIST models employ compound

Boolean expressions as conditionals, and modify several state variables as a result. For instance,

the statements below were taken from a working ASSIST model.

(* COVERAGE *)

DEATHIF (FT [I] +FT [2i +FT [3] +FT [4] )

(FF [I] +FF [2] +FF [3] +FF [4] ) ;

DEATHiF FT[I] * FT[2] + FT[3] + FT[4]

DEATHIF NI[I] + NI[2] + NI[3]

<2;

+ NI[4] + NI[5] + NI[6] <1;

t

(* TRANSITION RULES *) ' .

FOR _=1,6 ;

IF NOIG[]']=I TRANTO NOIG[T]=O, P[1]=O, CT=CT+I BY LNO;

IF NO2G[I]=I TRANTD NO2G[I]=O, P[2]=O, CT=CT+I BY LNO;

ENDFOR;

Here we see that ASSIST allows arrays of state variables, multiple DEATHIF and TRANTO

statements, and looping constructs. An important aspect of ASSIST models is that they are

essentially algorithmic. The TRANTO statements give a set of rules; any time the system state

satisfies a rule, a transition from that state is possible. The statements following the keyword

TRANTO describe how the system state is correspondingly modified, and the statement following

keyword BY gives the transition rate.

We found that the ASSIST syntax for describing state modification was too limited to efficiently

i express the dynamic network reconfiguration required by our first model problem. There, given the

operational status of network links, nodes, and devices, we must apply an algorithm to find a subset

of these components that form a bus. Nevertheless, we saw that it was still possible to exploit the

essential idea behind ASSIST, which is to express state transitions in terms of recognizing when

and how they occur. Our simple extension is to allow the statement following a TRANTO to be a

call to a subroutine in the C programming language, where declared ASSIST state variables may be

"i



both read and written directly. Similarly, the ability to express DEATHIF and TRANTO conditions is

extended by allowing calls to C routines that analyze the variables of the present system state and

return a Boolean value indicating whether a particular condition is satisfied. To our knowledge,

ASSURE is the only tool which both provides an analytic solution (as opposed to only simulation),

and allows manipulation of model state variables by a general programming language. In our

experience this ability proved invaluable when describing complex reconfiguration strategies, and

when analyzing models with complex death-state conditions. In support of these extensions, we

also allow a user to write a subroutine to compute the initial system state variable values, and to

build static C data structures (which ought only to be read, not modified) for use by other routines.

For example, we've used this feature to describe static network topologies and let the system state

vector contain only the operational status of each component.

These extensions are conceptually simple, and are implemented by using an ASSURE-to-C

source code translator. The translator parses the ASSIST model, translates references to AS-

SIST state variables into references to C variables, and uses the ASSIST model structure to cre-

ate problem-dependent C subroutines for detecting death-states and for generating all transitions

possible from a given state. These subroutines are compiled and linked to pre-compiled problem-

independent code that controls the generation process and performs the SURE analysis. On most

models, the translation step requires a few seconds and the compilation/linking step requires a few

tens of seconds, on ordinary workstations. This relatively small front-end cost is easily amortized

when a large model's execution phase takes minutes, or longer.

4 The SURE Theorem

Subsequent discussions are better understood following a brief description of the SURE theorem.

A fuller treatment of these bounds are given in [3].

We may think of a semi-Markov state-space as a directed graph whose nodes represent states,

and whose edges represent transitions. A precise mathematical definition can be found in many

standard texts, e.g., [16]. The SURE theorem applies to semi-Markov processes with two types of

transitions. Slow transitions are exponentially distributed, with small transition rates as compared

with the fast transitions, that may have general distributions. Slow transitions typically model

hardware component failure, whereas fast transitions model repair processes. The difference in

transition rates may span several orders of magnitude.

The sequence of transitions defining a path through a semi-Markov state space reflect a possible

system behavior in time. The amount of time the system takes to traverse a given path p is random,

call it Sp. Given a mission time T, the SURE theorem gives formulae for upper and lower bounds

(Uv(T) and Lp(T), respectively) on Pr{Sp _< T, path p is taken}. These bounds are of particular

interest when the last state on p is a death-state.

Let /) be the set of death-states, let I be the initial system state, and let T' be the set of all



pathsfrom I through states not in/), to some member of/). The probability that the semi-Markov

process enters/) within time T is

Pr{Death state entered within time T} = _ Pr{5'p _< T, path p is taken}.
pEP

(1)

To use the SURE bounds one discovers and analyzes every path in 7) (at least the ones with

sufficient probability) as follows. We classify every state on a path p as being a class 1,2, or 3 state.

A state is in class 1 if its transition on p is slow, and every other transition from the state is also

slow. Any state whose transition on p is fast is in class 2; the transition from a class 3 state is slow,

and there is at least one fast transition from that state. The following class-specific parameters are

needed to state the SURE bounds.

Class 1 Let k be the total number of class 1 states on p. For the i th class 1 state define ,Xi to be

the rate of the transition out of the state, and define 7_ to be the sum of rates of all other

transitions from that state.

Class 2 Let m be the total number of class 2 states on p. For the i th class 2 state define e_ to be

the sum of rates of all slow transitions from it. Let pi be the probability that the particular

transition on p is successful (as opposed to some other transition from that state); let #.2,, and

0"2, i respectively be the conditional mean and standard deviation of the state holding time,

given that the selected transition on p is successful.

Class 3 Let n be the total number of class 3 states on p. Let cq be the rate of the transition out

of the ith class 3 state on p, and/3i be the sum of rates of all other slow transitions from that

same state. Define #3,, and a3,i to be the mean and standard deviation of the holding time in

that state, given that a fast transition occurs (instead of the slow transition that di(t occur).

Finally, let Q(T) be the probability of traversing by T a path constructed by concatenating the

k class 1 states, and let h,r2,...,r,,,, and sl,s2,...,s_ be strictly positive numbers such that

T > A = rl T r2 T ... _- rm T 81 T 82 T - -" T Sn. Then

Lv(T) <_ Pr{,5'p _< T, path p is taken} _< Up(T)

where

and

Up(T) : Q(T) fi p, rI _J#_,J (2)

i=l j=l

Lp(T) = Q(T-A) pi 1-e_#2,_-
i=1 r_

x _.i #3,j- 2 sj
j=l

(3)

8



Computationof the a, #, a, and p values is standard. The following suggestions for ri, si, and

bounds on Q(T) are given in [3]:

r, : +

( + ,/5

yI_=l(AiT)( T k ) I]k=l()qT)k! 1 k+l_(Ai+%) _<Q(T)<_ k! (4)
i=l

An important characteristic of these bounds is that they depend only on a small amount of

information pertaining to the path. In fact, the products in Equations (2)-(4) can be accumulated

in a small, fixed amount of storage space as a path is extended. For computational reasons (for

Q(T)) we do separately save the Ai and 7i values from each class 1 transition, but this requires the

storage of only two floating point numbers per transition.

One way to use these bounds is to explore all paths from I to 7). Whenever a path p E 7) is

discovered, Lp(T) and Up(T) are computed and added to accumulating totals L(T) and U(T). It

is important to prune loops, or other paths with very small (relative) probabilities. SURE-based

tools typically prune a path p once Up(T) is smaller than some threshold 4) (which may be given

by the user, or can be found automatically). Upon pruning p, Up(T) is added to an accumulating

total P(T); the final lower and upper bounds on system failure by time T are then L(T) and

U(T) + P(T). One typically desires to find ¢ such that P(T) is an order of magnitude smaller than

u(T).
A user of the original ASSIST/SURE toolset constructs a state-space using ASSIST, and an-

alyzes it using SURE. In the next section we describe how the generation and analysis can be

combined, and how the whole process is easily parallelized.

5 Analysis Techniques

This section describes ASSURE's technique of depth-first generation and analysis of a model,

parallelization of this method, and a user-assisted technique for trimming the model during its

generation and analysis. We demonstrate empirically that these techniques effectively accelerate

the solution time of some large ASSURE models.

5.1 Depth-First Generation and Analysis

Memory usage seriously degrades the execution time of ASSIST and SURE on very large state-

spaces. Not only may tens of megabytes be required to store the model, but both the generation

and analysis processes may suffer thrashing in a virtual memory system.



Wecanaddresstheproblemby tradingoff computationalefficiencyfor spaceefficiency.ASSIST
storesall generatedstates;upon creatinga stateit looks to seeif that statealreadyexists,and
extendsa path through that state only upon its initial discovery. A differentapproachis to
simultaneouslyg_nerateandanalyzethe state-spacealongapath, andto discarddiscoveredstates
oncethey areno longerneededfor that path. This provides a significant memory savings since

memory requirements are proportional only to path length times fanout. The price paid for memory

efficiency is the recomputation of state descriptions. This tradeoff works to our advantage for an

important class of problems. As we will see, on the large examples we have studied the benefits of

memory efficiency are evident. Furthermore, the approach lends itself to parallel processing (which

was our initial consideration) because distinct paths can be generated and analyzed separately on

different processors. However, the approach has its limitations. Best results are obtained when the

system of interest tolerates only a few number of failures within the mission time, say, 5 or fewer.

Beyond that, the combinatorics of the approach threatens to create unacceptable solution times.

Our tool ASSURE combines the functions of ASSIST and SURE as follows. A path p is

represented internally by a data structure we call a path-record. A path-record contains a copy

of every ASSIST state variable, whose values represent the last state on the path. A path-record

also contains a list of the )_i and 7i values of all class 1 transitions on the path, and accumulated

products for Equations (2)-(4). ASSURE begins by initializing a path-record: to reflect I, and
.... _ 22 = : r

places it on a working list. ASSURE enters a loop where the first path-record on the working

list is removed and Up(T) is computed and compared against the pruning threshold. If Up(T) is

sufficiently high, the path-record's state variables are checked against a!] death-state conditions.

The code that performs th_s check is C code translated from ASSIST DEATHIF statements. A

path-record that survives pruning and death-state testing is subjected to extension through all

possible transitions' by checking its state Variables against every TRANTO condition specified in
[ :Z:::_ £: £

the ASSIST model. Every time a TRANTO condition evaluates to true a copy of the path-record

is created, its state variables are modified as proscribed by the ASSIST model, and the value of

the transition rate specified following the transition's BY keyword is recorded. Again, these tests

and modifications are performed by C code translations of ASSIST model statements. By testing

the path-record against all TRANTO conditions we discover and generate all transitions possible

from the path-record's last state. Given these transitions and their rates, all the quantities needed

by the SURE bounds for each new path are computed, and recorded in each new path-record. The

new path-records are attached to the head of the working list, and the process continues until the

working list is empty.

The description above shows that ASSURE generates all sufficiently probable paths from I to

D via a depth-first generation and analysis strategy. In addition, ASSURE provides the additional

capability of determining whether a model can survive any K failures without entering a death-

state. This is easily encorporated by recording the number of slow transitions on the path, and

prune once that count reaches K. If no death-states are uncovered, then the system model survives

10

!
|
J
z

!

i

i



any combination of K failures.

It is important to observe that the techniques described above do not depend on the specifics

of the ASSIST language. Any formal description of a reliability model will do, provided that one

can automatically and quickly find all transitions and their rates from any given state system

state. Indeed, as a follow-on to ASSURE, we have built an object-oriented language and tool,

REST, that is based on these same principles [15]. Within that framework we have also written

a SAVE-to-REST translator, thereby providing transient SAVE models with the computational

advantages described in this paper. Furthermore, we believe other tools could also incorporate

such an approach. For instance, HARP is widely used, but encounters memory problems on large

models [18]. Since HARP analysis is based on a Markov chain, and since system death conditions

are recognizable from the defining fault-tree, one could apply a depth-first combined state-space

generation and analysis method as we have done with ASSURE. Upon reaching a death-state or

a pruned state one could examine the path and numerically compute the exact probability (by

uniformization [16]) of reaching that state by time T.

At any time, the memory requirements of ASSURE are basically those of storing the working list.

However, ASSURE ends up doing more computation to generate the state-space than does ASSIST.

The tradeoff often works to ASSURE's advantage. On moderately large ASSIST models (that lack

comple× reconfiguration), ASSURE runs ten to twenty times faster than does ASSIST/SURE.

A simple analysis helps to quantify the tradeoff. Component failures essentially drive changes

in a system state. Let X be a state-vector with N components, and suppose that any given

collection of failures results in the same state of X regardless of the sequence in which the failures

occur. Ignoring effects of possible aggregation (i.e., different collections of failure s resulting in the

same state), a state s defined by j failures will lie on j! different paths. But s has j immediate

predecessors, implying tl_at ASSIST will discover s exactly j times. To a first approximation then,

if the model tends to tolerate j failures before entering a death-state or being pruned, ASSURE does

j!/j = (j- 1)! times more computation than does ASSIST. On the other hand, ASSURE's memory

requirements are small enough that it tends to operate without page faults, whereas ASSIST is

observed to thrash on large models. We estimate that ASSIST's average cost of "touching" a state

is several hundred times higher than ASSURE's. These estimates suggest that ASSURE is more

efficient than ASSIST when the system model tolerates a handful of errors within the mission time,

say, 5 or fewer.

5.2 Parallelization

ASSURE's generation and analysis technique is highly suitable for parallel processing, because

processors can independently generate and analyze distinct paths from I to/). One way is have a

controller process generate all one-step paths pl, p2,. •., PN from the initial state I, then distribute

these path-records among processors to seed their working lists. Once seeded, a processor is free

ll



to executeexactlyas in the serialcase. Each processor then independently accumulates a pruning

bound, and SURE bounds. The overall bounds are obtained by adding the contribution from each

processor.

The method above has the disadvantage that one processor may complete its work long before

another processor does. We have used two different methods of dealing with this problem. ASSURE

has been parallelized on a 32-processor Intel iPSC/860 multiprocessor. This machine has a fast

communication network, making it feasible for a processor with excess path-records to send some

to deficient processors. We implemented and studied severaJ dynamic load-balancing schemes that

balance the number of path-records per processor nearly perfectly when called. Our studies found

that for ASSURE problems it didn't matter very much how the load was rebalanced, so long as it

was reba]anced. A discussion of the different schemes studied is given in [14].

This type of balancing is not suitable for a loosely coupled network of workstations. However,

load-bMancing here is simple if the workstations share a common file system. The approachfis to

have every workstation generate path-records for every descendent of the initial state, and enumer-

ate them the same way. Every workstation i begins by seeding its working list with descendent i;

some dedicated process writes the number of unassigned descendents into a commonly viewed file.

A workstation executes independently until its working list is empty, at which point it consults

the remaining descendent count file to look for more work. If the value in the file is non-zero,

the workstation decrements the count, and reseeds its working list with the appropriate descen-

dent. Otherwise, the workstation writes its own results into a reserved file. The computation is

complete once all workstations have attempted and failed to acquire additionaJ workload. A mon-

itoring process accumulates and reports the individual workstation results. ASSURE does all this

automatically, given a run-time option specifying the network names of machines to use.

The simplicity and power of parallelizing SURE bounds calculations gives us reason to believe

that extremely large models can be generated and analyzed in a reasonable amount of time. For

example, we considered two different-ASSURE models of example flight-control network. The
r

first, called NetA, has 61 elements in its state-vector. Recovery from network failure is simplified

enough to be expressed in pure ASSIST. The second model, NetB, uses our language extensions,

and has 83 elements in its state-vector. Each hardware component (channel, network interface,

link, node, device interface, device) has its own failure rate; the ratio of the fastest recovery rate

to the slowest failure rate is 101°. In the data reported below, a path-record was pruned as soon as

the upper bound on its probability droppe d below ¢ =le-15. The analysis of NetA generated 3.6

million nodes with an average number of failures when a path terminated of 3.9. If we estimate

the actual size of the state-space explored as W choose L (i.e., W!/((W - L)!L!)) where W is the

length of the state vector and L is the number Of component failures, then the NetA analysis is

of approximately 0.5 million unique states. NetB generates 57.5 million nodes, with 4.0 average

failures at termination, and an estimated true state-space size of 2 million states. We report

experiments conducted on 32 processors of the Intel iPSC/860 multiprocessor (based on the i860

12



Model 1 Sparc 6 Sparcs 12 Sparcs 18 Sparcs 1 i860 32 i860s

NetA (3.6M nodes) 22 ufin 4 rain 2 min 2 min 2.66 min 0.15 rain

NetB (57.5M nodes) 7.5 hr 75 rain 35 min 24 rain 79.5 min 2.5 rain

Table 1: Timings of first model problem on parallel platforms

CPU), and on a local area network using 6, 12, and 18 SUN Sparc workstations of various models.

The iPSC/860 was dedicated to the application, whereas the network runs were competing with

everything else on the network (which was lightly loaded) at the time. Also, our network timings

have a resolution of only one minute, being taken from last-modification times on files. Table 1

presents these results.

The primary conclusion we draw from these timings is that the paralleUzation techniques work

to dramatically reduce solution time. Furthermore, while the performance shown is nearly an order

of magnitude faster on a dedicated multiprocessor, one can still get impressive performance from

workstation networks commonly found in research labs.

5.3 Model Trimming

The combinatorial growth of models explored by our method encourages us to search for ways

of reducing the number of states generated and analyzed. For instance, consider a path that has

undergone j failures, and supposewe could bound the probability of entering a death-state following

any two additional failures. Instead of generating the model for an additional two levels we might

trim it, and accumulate the death-state probability bound in the pruning sum. We have developed

a way of doing exactly that, and observe significant reductions in the model size. The method is a

generalization of the notion of a trimming bound, described in [19].

Consider all slow transitions out of an arbitrary state X. Typically each one is related to

the failure of a component or to a set of components. Some transitions may lead immediately to

death-states; call these transitions unsafe. At the other extreme, there are transitions which are

inherently safe. Formally, we'll say that a transition _ from state X is safe if taking _ from X does

not lead to system failure, and if X _ is any state reachable from X by one transition then 6 may

be taken from X _ without leading to system failure. For example, a safe transition is defined if a

system has a 4-plex redundant subsystem with all components up, and the subsystem remains up

so long as 3 components are up. At any time, from any state, the 4-plex can lose its first component

safely. Finally, we call a transition conditionally safe if the system does not enter a death state by

taking it, nor will a death-state be entered if a safe transition is taken first.

Our method is different from [19] in that we make a distinction between safe and conditionally

safe transitions. Like the earlier work, we assume (i) that components fail at a low constant rate,

13



S(X)= sumof safe transition rates

C(X) = stun of conditionally safe transition rates

U(X) = sum of unsafe transition rates

R(X) = sum of exponential recovery rates

M(X) = maximum sum of slow transition rates

C(X) s(x)

!

!
!

s(x)
R(X

M(X)
Failed State

k

Figure 2: Markov chain used to construct the trimming bound

= (ii) fault recovery depends only on the time since fault occurrence, and (iii) all transitions to system

failure are component failure transitions.:

Now from any state X, let U(X), C(X) and S(X) be the sum of rates of unsafe, conditionally safe,
=

and safe transitions, respectively. Also, let R(X) be the sum of rates of exponentially distributed

recovery transitions from X, and let M(X) he an upper bound on the sum of slow transition rates in

any state reachable from X in two transitions. To construct a trimming bound we may consider the

behavior of a simple Markov chain shown in Figure 2. From X it describes an aggregate recovery, an

aggregate unsafe transition, aggregate conditionally safe transition, and aggregate safe transition.

The chain also expresses a second level of behavior, with unsafe and not-unsafe transitions. The

rates on the second level transitions are upper bounds on the aggregate rates in the actual system.

The effect of recovery transitions on these states are omitted, which serves to accelerate the simple

chain towards failure state F even faster than the actual system. Our trimming bound is given

by adding the SURE upper bounds on each of five paths which extend the path to X further to

the failed state F. This sum is greater than the sum of probabilities of reaching any death state

eventually reachable by taking a failure transition from X.

14



In theoryonecouldusethetrimming boundby comparingit to athreshold¢ (like the pruning
threshold). If ¢ is larger, the only transitions from X that are generated are the recoveries, and the

trimming bound is added to the accumulating pruning bound. In practice it is difficult for a general

tool such as ASSURE to automatically compute the necessary failure rates (note, however, that

this is less oi' a problem with tools that impose more structure on their model input description,

from which the rates might be inferred). We've addressed the problem in ASSURE by allowing a

user to write a C language function that computes U(X), C(X), S(X), R(X), and M(X) for any

state X. ASSURE then automatically invokes and uses the results of the routine. This mechanism

allows a modeler to exploit knowledge of the system structure in order to quickly compute these

transition rates, or upper bounds upon them (or a lower bound on R(X)).

Consider our first example problem. When a device in a quad fails it is considered to be "failed"

and "in use" until completion of a recovery transition that takes it off-line. A "bad" component is

one that is in this transitional state. The ASSURE model defines the system to fail if any of the

following conditions holds.

,, A fault occurs in one network partition while the other partition is under repair.

• The number of FTP channels that are good is zero, or is less than or equal to the number of

channels that are bad.

• For every device type, the number of devices that are good is zero, or less than or equal to

the number of devices that are bad.

• A failed network is unable to establish a virtual bus to operative devices.

Using this information, one can write a routine that examines the model state variables and clas-

sifies the effect of every component failure as being safe, conditionally safe, or unsafe. Since the

classification will be done often it is important to do it quickly. One can always misassign a tran-

sition to a class with less safety, e.g., assign what is actually a safe transition to the conditionally

safe class. The bounds needed by ASSURE are obtained by summing rates within a class. For

example, suppose X reflects a state in our model NetB where one partition is under repair. Then

every transition related to a component failure that might trigger a network recovery in the other

partition is classified as unsafe, e.g., the failure of a llnk on the virtual bus. On the other hand,

transitions related to FTP channel failures may be in any of the three classes. If there is only

one good FTP its failure will cause system failure, and hence that transition is unsafe. If there

are two good FTP channels, and two failed channels then each FTP channel failure transition is

conditionally safe; with three good FTP channels and one failed channel each transition is safe.

Other component failures may be similarly analyzed.

A simple modification of this scheme deserves special comment. While ASSURE needs user

assistance to produce U(X), C(X), S(X), and R(X), it does not need help computing M(X), provided

15



that M(X{) isno largerthan thestunof slowtransitionratesout of the initial state.Forthis reason
ASSUREprovidesan automatictrimming boundfrom stateX whereit is assumedthat all slow
transitionsfromX areunsafe,andhaveaaggregatefailurerateboundedby that of the initial state.
(HARP trimming makesa similarassumption.)Wheninitiating anysolutionrun, ASSUREcan
be told not to assumeboundedness.

To investigatethe utility of thesetrimming optionswesolvedthe first modelproblem(NetB)
usingthreedifferentoptions,all with a trimming (or pruning) thresholdof ¢ = le-15. The first

option we call standard--a path is pruned if the upper bound for that path is less than ¢. We call

the second option bounded--this method uses the automatic bounded trilmning method, and needs

no user assistance. The third option we call user-assisted, because the user supplies a routine that

computes and classifies transitionr_tes. The table below illustrates the results, noting the total

number of states generated, the pruning bound, and the time required for solution on a single Sparc

l+ workstation. All methods obtained the same unreliability bounds for a 3 hour mission, 3.77e-9

and 3.96e-9.

Method Total Number of States Pruning Bound Execution Time

Standard 57.5M 9.3e-11 590 rain

Bounded 7.2M 4.3e-11 112 rain.

User Assisted 1.1M 4.5e-11 17 min.

From this data we see the tremendous advantage of exploiting a monotonic property over not

exploiting it, and the further advantage of providing user assistance. It is also interesting to note

that the standard method's nodeexecution rate is nearly twice as fast as the others, since it suffers

no overhead to compute lookahead trimming bounds. However, the overhead of computing more

advanced trimming bounds is clearly worth the effort.

The key ingredient to making the user-assisted bounds work well is that the user-supplied

routine be able to quickly compute upper bounds on the transition rates. The alternative is to let

ASSURE discover these rates (at least U(X) and C(X)+S(X)) by generating the descendents of X.

We tested the alternative, and found no performance gains. There is, of course, some danger that a

user may misclassify transitions, leading to premature trimming and failure to discover important

death-states. However, we believe that trimming of this type may be safely used if the system of

interest has structure that permits automatic classification of pending transitions, or if there is a

higher level system description language (like TOTAL) where sufficient structure is expressed so

that a correct user-assisted pruning routine may be generated automatically.

6 Simulation

Despite the promise of analyzing large state-spaces via parallel processing and smart trinmling, the

prohlem remains that gargantuan state-spaces defeat any approach based on exhaustive analysis.

16



This is especiallytrue in systemswhichtoleratemanyfailures.Evenif a tool cananalyzeamodel,
albeit slowly,a modelermaydesirelooseupperboundson reliability in the courseof exploringa
modeldesign.Alternatively,onemayfirst wishto exhaustivelytest to ensurethat anycombination
of K failures will not cause system failure, and then get a rough estimate of reliability. In such cases

a Monte Carlo simulation approach can help. This section outlines such an approach, based on

importance sampling. We first discuss the mathematics of sampling and show that the basic method

is sound. We also point out that importance sampling based on SURE bounds achieves variance

reduction over another standard method. We then consider parallelization, and observe excellent

speedups. Next we discuss optimized death-state checking, and also further language extensions

to support general statistical measurements. Finally we discuss some important implementation

considerations.

6.1 Mathematical Basis

For any path p ending in 7) (i.e., p E P), let f(p) denote the probability that the system chooses p

on its way to 79, if left to run sufficiently long. Then

Pr{System failure by time Tlpath p is taken } = Pr{Sp < T]path p is taken}.

Thus

Pr(System failure by time T} = __, f(P)Pr{Sp<-Tlpathpistaken}

pEP

= EI[Pr{Sp <_ TIpath P is taken}] (5)

where P is the random path chosen to/). A Monte Carlo approach is to estimate this expectation

via random sampling of Pr{Sp < TiP is taken}.

(liven a path p and SURE bounds Lp(T) and Up(T), we know that

Lp(T) Up(T)
f(p) < Pr{Sp _< Tlpath p is taken} _< f(p) . (6)

This inequality could be used to estimate bounds on E/[Pr{Sp _< T]path P is taken}], but

there is a serious problem with such an approach. When P is sampled from f, from any state

with both fast and slow transitions we will ahnost always chose the fast (recovery) transition. The

majority of death-states occur in those rare cases when recovery mechanisms are defeated by low

probability additional failures. Sampling paths using f means missing some of the death-states one

is atteml)ting to find. This problem has been recognized before [13, 4, 10, 8], where the notion of

importance sampling is used. Intuitively, importance sampling is used to skew the path _ampling

towards rare events. Mathematically, let g(p) be a different probability mass function for sampling

17



pathssuchthat g(p) _ 0 whenever f(p) # O. Then

E/[Pr{Sp < TIP is taken}] = _ f(p) Pr{Sp < Tlpath p is taken}

pEP

= _ g-_,f(P)g(p)" Pr{S v _< Tlpath p is taken}
pEP

= Eg[R(P)Pr{Sp < r[path P is taken}]

where R(p)= f(p)/g(p).

To use importance sampling is to estimate the latter expectation by randomly sampling (with

respect to g) bounds on R(p) Pr{S'p _< Tip is taken}. From inequality (6) we see that for any path

P

or equivalently,

Up(T)R(p) <_R(p) Pr{Sp _<T]path p is taken} < R(p) f(p) ,

Lp(T) Up(T)

g(p) <_ R(p) Pr{S'p _<T[path p is taken} _< g(p-----_: (7)

The Monte Carlo analysis consists of sampling (with respect to g) many independent replications

of paths to 79, and for each computing Lp(T)/g(p) and Up(T)/g(p) as samples. Following many

replications we compute confidence intervals on Eg[R(P)Lp(T)] and Eg[R(P)Up(T)], and use these

to construct confidence intervals on the probability of system failure by T.

Many different ideas have been sfiggested for important sampling, e.g., see [10]. We have been

successful with a strategy that partitions transitions from a state into slow and fast classes, chooses

the slow class with some probability q and chooses the fast class with complimentary probability.

Within a class a transition is chosen with probability proportional to its transition rate. For a

given path p, g(p) is computed as the product of the probabilities of each forced transition decision.

This transition selection strategy was proposed in [13]. However, part of that proposal is to also

sample holding times, conditioning them on no transition time exceeding T. When/) is reached,

the sample statistic is of the form d(p)f(p)/g(p), where d(p) is the product of ratios of the form

h(tilti_l, k)/]_(tilti-1, k). Here ti is the sampled transition time from the i th state on p, say k, given

that k is entered at time ti-1. h(tilti_l) is the density of that transition time using k's true holding

time distribution, and ], is the forced density function. Contrast the measure d(p)f(p)/g(p) with the

SURE-based measure Up(T)/g(p). A key point is that conditioned on taking path p, d(p)f(p)/g(p)

is still a random variable (d(p) varies), whereas Up(T)/g(p)is deterministic. This immediately

implies that the expected average measure in the original scheme has a larger variance does the

expected average SURE measure. Therefore confidence intervals based on SURE bounds (when

using the same transition selection strategy) will on average be smaller.

18



Model Size Exact Solution Simulation Bounds Solution

(nodes) Bounds time (10,000 replications) time

aclust3 34623

arcsxod 1 1032

billee 991

NetA 3.6M

NetB 57.5M

4.94e-8, 4.95e-8 9 sec

6.81e-3, 6.92e-3 0.4 see

2.24e-7, 2.25e-7 0.4 sec

4.02e-6, 4.12e-6 22 rain

3.76e-9, 3.97e-9 7.5 hr

(5.00 + 0.14)e-8, (5.01 + 0.14)e-8 31 sec

(6.63+ 0.25)e-3,(6.74+ 0.26)e-3 21sec
(2.25 + 0.11)e-7, (2.25 + 0.11)e-7 27 sec

(3.47 + 0.51)e-6, (3.82 + 0.57)e-6 2.2 rain

(3.68 -[- 0.28)e-9, (4.04 -4- 0.35)e-9 5.4 min

Table 2: Comparison of SURE-based and simulation-based analysis

The quality of results obtained from importance sampling schemes are known to be sensitive to

the problem class. We were naturally concerned whether the schemes we examined were effective on

problems for which SURE was intended. Happily, the scheme above with q = 0.5 has proven to give

results consistent with SURE analysis (this setting was also recommended in [4]). We tested the

simulation-based results with SURE predictions, on a suite of problems used at NASA to validate

ASSIST, Three of these are listed below, as well as models NetA and NetB, described earlier, using

standard pruning. All simulation runs are based on 10,000 replications. The simulation-based lower

and upper bounds are given as 95% confidence intervals, and timings are taken on a SUN Sparc

workstation. This data suggests that the simulation based approach is able to find small intervals

around the exact bounds, and in the case of the very large models do so more rapidly than the

exact analysis. However, it is also clear that orders of magnitude more replications are needed if

we wished to shrink the confidence intervals to less than one percent of the mean. The advantage

of simulation is that reasonably good numbers can be gotten relatively quickly. We expect there is

utility in numbers known to be uncertain within 10%.

We also estimated reliability on the models above using skewed holding times as described

in [13, 8]. On the small models there was no appreciable difference between the relative errors

(confidence interval width divided by sample mean) of the two approaches. However, on NetA

and NetB the SURE-based approached yielded relative errors that are 20% smaller. The SURE

approach also runs 10-20% faster, since it avoids random number generation for holding times. For

the 10,000 replications examined here, the confidence intervals for both approaches are not small

enough to distinguish between an estimate based on SURE's upper bound, or the estimate of the

precise probability.

The primary motivation for importance sampling is variance reduction. It is therefore instructive

to examine how the sample variance achieved under our scheme changes as the class probability

threshold q changes. This is illustrated in Figure 3, where for the NetB model we plot 95%

confidence intervals on the upper bound 3.97e-9, following 10,000 replications. This data shows

19



(D
,v--

x

-C_
c

0
_0

L_

O_
O_

-C3

0

E

10-

8-

6-

4

2

0 t 1 I I

0.0 O.4 0.8

Class selection parameter q

I

Figure 3: Confidence intervals as function of importance sampling parameter q

the danger of skewing q too far one way or the other, q = 0.5 appears to be a satisfactory setting.

However, since effective importance sampling is known to be problem class dependent, ASSURE can

call a user written routine to do the importance sampling. Such a routine is passed a description of

the system state, and all transitions possible from that state (and their rates). The routine chooses

a transition, and reports back the probability of making that choice under the importance sampling

strategy. This is all the information ASSURE needs to correctly compute its statistics.

6.2 Parallelization

Simulation replications are trivia£1y parallelized; we have done so on the workstation network. The

only challenge is to use a load-balancing scheme that does not incur excessive overhead, but which

is responsive to changing network loads. Our scheme is to maintain a commonly accessed file,

to contain the remaining number of replications. A workstation devoid of work accesses this file,

acquires some fixed number G replications (G is user-defined so that replications are acquired no

more than, say once a minute), modifies the file and releases it. The simulation is complete after

every workstation finishes its work, and sees zero remaining replications. A monitoring process

combines and reports the aggregate results. To demonstrate the effectiveness of this approach,

we simulated NetB for 100,000 replications on 1, 6, 12, and 18 workstations at a time when the

2O



networkloadwaslow. Therunningtimeswererespectively35,6, 3, 2 minutes.Onceagainwesee
the tremendousadvantageofferedby parallelprocessing.

6.3 Additional Issues

Wenowconsidersomeauxiliaryissues.In ASSURE,simulation-basedanalysisgeneratesdifferent
problem-dependentcodethan doesexactanalysis;the generationof a state'sdescendentsis done
in two passes.The first passidentifiesthe existence of each descendent, and its transition rate.

This pass does not actually perform the state-space modification. ASSURE's simulation control

code selects a descendent, and in a second pass that descendent's state is created. We judged this

approach to be crucial for problems with large state vectors, and/or complex state-modification

routines. Indeed, this approach yielded a factor of two reduction in execution time on NetA and

NetB.

Our study of the second model problem led us to consider another implementation issue, that of

death-state checking. ASSURE's basic scheme checks death-state conditions after every transition.

This makes sense for many models, including all of the ones we've considered so far in this paper.

However, consider our second model problem, where a system is considered to have entered 7) if

there exist two operable processors that cannot communicate under the constraints of the fault-

tolerant routing protocol. We noted earlier the high computational cost of checking that condition.

The problem is that a path may be extended many times before reaching/); most of the death-state

checks are unnecessary, as they do not observe a death-state.

We exploit the fact that once the system State enters 7) it will not depart. The optimization

is to only periodically check whether a path under expansion has entered /), say, check every

d transitions. We keep an ordered list of all path-records generated in the last d transitions.

Upon reaching the d th transition since the last check, we check the DEATHIF conditions on the

present state variable values. If the state is not in/) we release the first d - 1 of the stored path

records, and continue for another d transitions. Once a death-state is uncovered we must find

the first state to enter /) among the last d visited. Since their path-records have been saved in

order of generation, we may perform a binary search. The number of death-state checks is thus

approximately logarithmic in the path length, rather than linear. Observe that when systems can

be repaired it may be possible to express a model that can pass into and out of 7), even though

that may not be intended. For this reason, the optimization under discussion must be requested

by a user, it is not automatic. However, one could adapt the scheme by always checking for a

death-state on recognition of a recovery transition we check the state just prior to the recovery

and use that state as the terminus of a search interval.

In order to both illustrate the advantage of periodic checking and illustrate that simulation

based analysis can handle large problems, we consider the second model problem. The routing

protocol studied permits at most two "miss-steps", which means that the number of ]inks crossed

21



Hypercube
Dimension

Size Avg. ConstantCheck PeriodicCheck
(nodes,links) Failures sim. rate sire. rate

6 (64,192) 73 4.52reps/min 28.8reps/min
7 (128,448) 166 0.4 reps/nfin 5.2 reps/min

8 (256,1024) 400 0.04 reps/min 0.92 reps/min

Table 3: Simulation rates on fault-tolerant routing problem, as the problem size varies

when i and j communicate is no larger then four plus the Hamming distance between i and j. With

some straightforward optimizations it costs O(nodes × links) time to determine whether a given

network configuration is dead. We check the death-state condition every 100 transitions. Table 3

shows the effect on the simulation rate (replications/minute) of the "constant check" and "periodic

check" methods, as the size of the problem increases. The table shows the problem size (in numbers

of components), the average number of failed components when/) is entered, and the simulation

rates. This data clearly shows the advantage of periodic checking on problems of this type, and

also shows that simulation-based ASSURE analysis is able to deal with relatively large problems,

especially if we use parallel processing. On the largest problem shown here, we could expect to

complete a 1000 repfication run in approximately an hour using 18 workstations in parallel.

On this data the relative error from the SURE-based approach is approximately 33% smaller

than that using skewed sample times, showing again the variance-reduction advantage of using

SURE bounds.

Needs of the second model problem also gave rise to another language extension. The users

were interested in obtaining statistical information about the system configuration in death-states_

e.g., the average number of failed nodes and/or links. It was relatively easy to provide this by

allowing "statistics" variables to be declared in the ASSIST model, e.g.,

SAMPLE FailedNodes ;

A user provides a routine , called when a death-state is recognized, that assigns values to all SAldPLE

variables. ASSURE automatically computes averages and confidence intervals, reporting these at

the end of the analysis.

7 Conclusions

This paper demonstrates methods for accelerating the solution time of reliability analyses based on

the SURE bounds. Our methods are centered around the notion of simultaneously generating and

analyzing a state-space along a failure path, but discarding the state information once the path

is analyzed. This provides a significant memory savings, but exacts a cost of recomputing state

22



information. Wehaveshownthat this tradeoffis advantageouswhensystemfailure occursafter
a small numberof componentfailures. In addition the approachis easilyparallelized,either on
a dedicatedmu]tiprocessoror onan ordinarynetworkof workstations.An important part of our
methodis to usea minimumof specializedsyntaxto describeaframeworkfor amodel'stransition
behavior,and to let a modelerusethe full resourcesof the C programminglanguageto describe
the detailsof that behavior.

We alsoinvestigatethe integrationof SUREboundsand MonteCarlo simulationbasedon
importancesampling.Wefind that theapproachproducesaccurateresultsusingasfew as10,000
replicationsonmodelswith twoordersofmagnitudemoreStates.Consequently,onlargemodelsthe
simulation-basedanalysisexecutesmorequickly.Furthermore,weobservethat SURE-basedMonte
Carloestimationhasdesirablevariancereductionproperties. Finally, simulation-basedanalysis
admitssolutionof problemsthat are toolargefor exactanalysis,andadmitseasyexploitationof
parallelismby simulatingindependentreplicationsin parMlel.

All of the methodsdescribedareencorporatedin a tOo]calledASSURE.From a singleuser
interface,ASSUREprovidesexactanalysisor simulation-basedanalysis,serialexecutionor parallel
execution. EmpiricM studiesof large modelssolvedwith ASSUREshowthat the methodswe
describeareeffectivein acceleratingthe solutiontime of largecomplexproblems.

Our resultsshowthe promiseof attackinglargereliability problemsby path analysis.Further
workmaybedirectedtowardsgeneralizingthe SUREboundsto includenon-homogeneousfailure
rates,andto sharpenconfidenceintervalswith moreadvanceimportancesamplingschemes.

Distribution

ASSURE is available by request. Contact the first author-at nicol@cs ._rm. edu.

References

[1] M. Boyd and S. Bavuso. Simulation modeling for lofig duration spacecraft control systems.

In Proceedings of 1993 Annual Reliability and Maintainability Symposium. IEEE Press, Jan.

1993. -:

[2] R. Butler. An abstract language for specifying Markov reliability models. IEEE Trans. on

Reliability, R-35(5):595-601, December 1986.

[3] R.W. Butler and A.L. White. SURE reliability analysis. NASA Technical Paper 2764, NASA

Langley Research Center, March 1989.

23



[4]

[5]

[6]

[7]

A. Conway and A. Goyal. Monte Carlo simulation of computer system availability/reliability

models. In Proceedings of the 17th International Symposium on Fault-Tolerant Computing. CS

Press, July 1987.

J.B. Dugan, K. Trivedi, M. Smotherman, and R. Geist. The hybrid automated reliability

predictor. AIAA Journal of Guidance, Control and Dynamics, 9(3):319-331, May-June 1986.

J.B. Dugan. Fault trees and imperfect coverage. [EEE Transactions on Reliability, R-38, June

1989.

A. Goyal et al. The system availability estimator. In Proceedings of the 16 th Int'l Symposium

on Fault-Tolerant Computing, pages 84-89. CS Press, 1986.

[8] R. Geist and M. Smotherman. Ultrahigh reliability estimates through simulation. In Proceed-

ings of the Annual Reliability and Maintainability Symposium, pages 350-355. IEEE Reliability

Society, January 1989.

[9] K.K. Goswami and R.K. Iyer. DEPEND:A design environment for prediction and evaluation

of system dependability. In Proceedings of the 9 th Digital Avionics Systems Confere/,ce. IEEE

Press, Oct. 1990.

[10] A. Goyal, P. Shahabuddin, P. Heidelberger, V. Nicola, and e. Glynn. A unified framework

for simulating Markovian models of highly dependable systems. IEEE Trans. Computers,

41 ( 1):36-5i' JanUary 1992.

[11]

[12]

[13]

[14]

[15]

S. Johnson. The ASSIST language user's manual. NASA Technical Memorandum 87735,

NASA Langley Research Center, 1986.

J.H. Lala. Advanced information processing system (AIPS) - based fault tolerant avionics

architecture for launch vehicles,. In 9 th Digital Avionics Systems Conference, pages 125-132,

October 1990.

E. Lewis and F. Bohln. Monte Carlo simulation of Markov unreliabilty models. Nuclear

Engineering and Design, 77:49-62, 1984.

D. Nicol. Communication efficient global load balancing. In Proceedings of the 1992 5'calable

High Performance Computing Conference. IEEE Press, April 1992.

D. Nicol, DI Palumbo, and A. Rikfin. REST:A paraJlelized system of reliability estimation. In

Proceedings of the Annual Reliability and Maintainability Symposium. IEEE Reliability Society,

1993.

[16] H.S. Ross. Stochastic Processes. Wiley, New York, 1983.

24 •



[17] R. Sahnerand K. Trivedi. ReliabilitymodelingusingSHARPE.IEEE Transactions on Reli-

ability, R-36:186-193, June 1987.

[18] T. Sharma and I. Bazovsky. Reliability analysis of large systems by Markov techniques. In

Proceedings of 1993 Annual Reliability and Maintainability Symposium. IEEE Press, Jan. 1993.

[19] A.L. White and D.L. Palumbo. State reduction for semi-markov reliability models. In Pro-

ceedings of 1990 Annual Reliability and Maintainability Symposium. IEEE Press, Jan. 1990.

25



I Form ,4pprovedREPORT DOCUMENTATION PAGE oMs No.oTo.-oTaa
i ....

Pu_li( report,rig burden for thq$ coffee, ion of information i_ estimated to average 1 hour Der response, including the time for revpewmg instf_Jctlon$, searching existing data _ource_.
gathermg and maintaining the data needed, and completing and rev*ewmg the collec[ion of reformation Send comments regarding thb$ burden estimate or any other aH:,e_ of _hls

collection of information, mclucling $uggestion_, for reducing th_s burden to Wa/,hmgtOn HeadQua_ers Serwces, DireCtorate for Information O_ratlons and Report, 12 _S Jefter_on
0avis Highway, Suite 1204, Arl_ng[oo, VA 221024302, and tO the Office of Management and Budge;, Paperwork ReduCtion Prolect (0704-0 IBB), Washmgton. DC 20503

1. AGENCY USE ONL'_ (Leave blank) 2. REPORTDATE

March 1993
filli rir

4. TITLE AND SUBTITLE

RELIABILITY ANALYSIS OF COMPLEX MODELS USING SURE

BOUNDS

|

6. AUTHOR(S)

David M. Nicol

Daniel L. Palumbo

7. PERFORMINGORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

g. sPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

11. SUPPLEMENTARYNOTES

3. REPORT T'_I_E AND DATES COVERED

Contractor Rennrt
5. FUNDING NUMBERS

C NASI-18605

C NASI-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93-14

10. SPONSORING/MONITORING
AGENCY REPORTNUMBER

NASA CR-191445

ICASE Report No. 92-14

Langley Technical Monitor:

Final Report

Michael F. Card

12a. DISTRIBUTION/ AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

Submitted to IEEE Transac-

tions on Reliability

12b, DISTRIBUTION CODE

13.ABSTRACT(Max_um200words)

As computer and communications systems become more complex it becomes increasingly

more difficult to analyze their hardware reliability, because simple models may fall

to adequately capture subtle but important model features. This paper describes a

number of ways we have addressed this problem for analyses based upon White's

SURE theorem. We point out how reliability analysis based on SURE mathematics can be

extracted from a general C language description of the model behavior, how it can

attack very large problems by accepting recomputationin order to reduce memory

usage, how such analysis can be parallelized both on multlprocessors and on networks

of ordinary workstations, and observe excellent performance gains by doing so. We
also discuss how the SURE theorem supports efficient Monte Carlo based estimation

of reliability, and show the advantages of the method.

14."SUBJECTTERMS "-

reliability, Markov modeling

17. SECURITYCLASSIFICATION 18. I sEcuRITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

lS. NUMBER OF PAGES

27
16. PRICECODE

A03
19. SECURITYCLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribe4 by ANCA ¢.td Z39-18
298-102

I_U,S. GOVERNM£NT P_INTING OFFICE: 1993 - "/ZB-OK4/660L1


